Magic, Syphilis and C.S.I A friendly introduction to compressive sensing.

Rhian Davies

November 29, 2013

Engineering and Physical Sciences Research Council

★ ロン → 御 > → (할 > → 할 > → 할

excellence with impact

 299

Syphilis in World War II

- \triangleright US PHS study WWII
- ► Rob Dorfman "The detection of defective members of large populations." 1943
- \triangleright We can combine M blood samples together and test a combined sample to see if at least one recruit in the sample has syphilis.
- If negative we have "saved" $M - 1$ tests.
- If positive, we have "wasted" a test.

excellence with impact

4 0 8

 $\leftarrow \Xi \rightarrow$

 2990

The coin puzzle

Non-adaptive solution

$1 \t2 \t3 \t4 \tvs 5 \t6 \t7 \t8$ 1 4 8 9 | vs | 2 3 11 12 3 7 9 12 | vs | 1 2 5 10

- \blacktriangleright Sparsity
- \triangleright Testing in subsets / Reduced number of measurements
- \blacktriangleright Non adaptive measurements
- \blacktriangleright Decoding procedure

- $\blacktriangleright M \times N$ measurement matrix $\Phi (M \ll N)$
- ► Signal $x \in R^N$ which is sparse (contains k nonzero entries).
- I Identify the location of k elements using $y = \Phi x$ measurements
- \blacktriangleright How small can we make M and still recover x using only y?

The encoding process.

Figure: CS measurement process, courtesy of Volkan Cevher.

→ 個 ▶ → 君 ▶ → 君 ▶ │ 君 │ ◆ 9 9 0 º

excellence with impact

 \leftarrow \Box

We require that the signal x can be uniquely reconstructed. It is possible to show that this will hold true if the null space $\mathcal{N}(\Phi)$ does not contain any vectors in Σ_{2K} .

$$
\mathcal{N}(\Phi)=(z:\Phi z=0).
$$

In order to preserve ${\bf x}\in \Sigma_{\cal K}$, it is required $\bm{\Phi}{\bf x}\neq \bm{\Phi}{\bf x'}$ $\forall {\bf x'}\in \Sigma_{\cal K}$, because if $\Phi x = \Phi x'$ it would be impossible to distinguish x from x' based only on y.

Consider,
\n
$$
\begin{aligned}\n\Phi \mathbf{x} &= \mathbf{\Phi x'} \\
&\Rightarrow \mathbf{\Phi(x - x')} &= 0 \\
&\Rightarrow (\mathbf{x - x'}) \in \Sigma_{2K}\n\end{aligned}
$$

K ロ X K @ X K 할 X K 할 X (할 X) 9 Q Q *

excellence with impact

Φ uniquely represents all $\mathbf{x} \in \Sigma_K \iff v \notin \mathcal{N}(\mathbf{\Phi}) \ \forall \mathbf{v} \in \Sigma_{2K}$.

Measurement Matrix Φ: Restricted Isometry Property

- \triangleright y may be corrupted by noise during the measurement process.
- \blacktriangleright Matrix Φ satisfies the (RIP) of order K if there exists a $\delta_K \in (0,1)$ such that

$$
(1 - \delta_k)||\mathbf{x}||_2^2 \le ||\mathbf{\Phi}\mathbf{x}||_2^2 \le (1 + \delta_k)||\mathbf{x}||_2^2,
$$

for all $\mathbf{x} \in \sum_{K} = \mathbf{x} : ||\mathbf{x}||_0 \leq K$.

- \triangleright Φ preserves the distance between any pair of K-sparse vectors.
- \triangleright This gives a stronger guarantee of robustness against noise.
- \triangleright Both of these conditions will hold true with high probability if Φ is selected as a random matrix.

K ロ X (個) X を X X を X を → 「 を → の Q Q

excellence with impact

- \triangleright Solve $y = \Phi x$, infinitely many solutions! Fat Φ implies underdetermined system.
- \triangleright We know that x was sparse
- \triangleright What algorithms can we use to decode?
- ▶ Convex Optimisation or Greedy Algorithms or something else...?

 ℓ_1 [minimisation](#page-26-0) \bullet [Orthogonal Matching Pursuit](#page-27-0)

Traditional Image Acquisition

We cannot use compressive sensing with this camera!

The single pixel camera.

Figure: The single pixel camera

Doesn't acquire a single ray of light per pixel but rather a combination of rays of light (each coming from a different direction or spectral band or both) per pixel. To obtain back a picture that can be understood by the human eve, one nee[ds](#page-17-0) the reconstruction [m](#page-19-0)[e](#page-17-0)thods me[nti](#page-18-0)[o](#page-19-0)[ne](#page-0-0)[d](#page-27-1) [ear](#page-0-0)[lie](#page-27-1)[r.](#page-0-0) QQ

Digital micro-mirror device

- \blacktriangleright Many very tiny tilt-able mirrors.
- \blacktriangleright Each mirror can be positioned in two states.
- \triangleright A random number generator modulates the positions.
- \blacktriangleright \blacktriangleright \blacktriangleright Therefore the light, can be reflected in two [di](#page-18-0)s[ti](#page-20-0)n[ct](#page-27-1) [d](#page-20-0)[ire](#page-0-0)ct[ion](#page-0-0)[s.](#page-27-1)

4 0 8

 299

G

- \blacktriangleright Mathematically calculating inner products
- \blacktriangleright Each set of mirror orientations $=$ one measurement.
- Repeat M times.
- \blacktriangleright Therefore SPC compresses and samples in the measurement process.

∋ s \rightarrow \equiv \rightarrow

excellence with impact

4 0 8

E

 $2Q$

Results from SPC

Figure: Reconstructed image taken with the SPC. (a) Conventional image of the target scene. (b) Reconstructed image with $M = 1300$ measurements.

→ (唐) → (唐) → (唐)

excellence with impact

 \leftarrow \Box

 2990

- \blacktriangleright Data storage is cheap.
- \triangleright We can store the information, so why bother?
- \triangleright What about a fixed sensors on the moon?
- \triangleright Scenarios where we need simplicity at the sensor, complexity at the analysis hub.

Compressive Sensing is not...

Sparsity and wavelet transformation

Achievable resolution is dependant on the information content of the image. If an image has low information content it is said to be sparse and can be perfectly reconstructed from a small number of measurements. Nearly all real world images exhibit this sparsity property when transformed using a wavelet basis.

Figure: Wavelet transform

Using ℓ_1 minimization to promote sparsity

$$
\|\mathbf{x}\|_1 = \sum_{i=1}^N |x_i|
$$

Originally used in geophysics to aid detection of sparse spike trends in earthquake data, optimisation based on the l_1 norm can closely approximate compressible signals with high probability.

 $\min_{\mathbf{x}} ||\mathbf{x}||_1$ subject to $\mathbf{y} = \mathbf{\Phi} \mathbf{x}$.

K ロ > K 個 > K 差 > K 差 > → 差 → の Q Q →

excellence with impact

[Recovery Algorithms](#page-16-0)

Define the columns of Φ to be $\varphi_1, \varphi_2, \ldots, \varphi_N$. **Require:** $r_0 = y$, $\Lambda_0 = \emptyset$ and iteration counter $i = 1$ for $i < T$ do $\lambda_t = \text{argmax}_{i=1,\dots,N} \vert \langle r_{t-1}, \varphi_i \rangle \vert$ {Find the index for the column of Φ with the greatest contribution.} $\Lambda_t = \Lambda_{t-1} \cup \lambda_t$, $\Phi_t = [\Phi_{t-1}, \varphi_{\lambda_t}]$ {Keeps track of the columns used.} $\mathbf{x_t} = \mathsf{argmin}_{\mathbf{x}} ||\mathbf{y} - \mathbf{\Phi}_{\mathbf{t}} \mathbf{x}||_2$ {Updates the signal estimate.} $r_t = v - \Phi_t x_t$ {Updates the measurement residual.} end for return \hat{x}

EPSRC

