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Syphilis in World War II

I US PHS study WWII

I Rob Dorfman “The detection
of defective members of large
populations.” 1943

I We can combine M blood
samples together and test a
combined sample to see if at
least one recruit in the sample
has syphilis.

I If negative we have “saved”
M − 1 tests.

I If positive, we have “wasted” a
test.



The coin puzzle

http://nrich.maths.org/5796


Non-adaptive solution

1 2 3 4 vs 5 6 7 8
1 4 8 9 vs 2 3 11 12
3 7 9 12 vs 1 2 5 10



What do these group testing examples have in common?

I Sparsity

I Testing in subsets / Reduced number of measurements

I Non adaptive measurements

I Decoding procedure



Compressive Sensing

I M × N measurement matrix Φ (M � N)

I Signal x ∈ RN which is sparse (contains k nonzero entries).

I Identify the location of k elements using y = Φx measurements

I How small can we make M and still recover x using only y?



The encoding process.

Figure: CS measurement process, courtesy of Volkan Cevher.



Measurement Matrix Φ: Null space condition

We require that the signal x can be uniquely reconstructed. It is possible
to show that this will hold true if the null space N (Φ) does not contain
any vectors in Σ2K .

N (Φ) = (z : Φz = 0).

In order to preserve x ∈ ΣK , it is required Φx 6= Φx′ ∀x′ ∈ ΣK , because if
Φx = Φx′ it would be impossible to distinguish x from x′ based only on y.

Consider, Φx = Φx′

⇒ Φ(x− x′) = 0

⇒ (x− x′) ∈ Σ2K

Φ uniquely represents all x ∈ ΣK ⇐⇒ v /∈ N (Φ) ∀v ∈ Σ2K .



Measurement Matrix Φ: Restricted Isometry Property

I y may be corrupted by noise during the measurement process.

I Matrix Φ satisfies the (RIP) of order K if there exists a δK ∈ (0, 1)
such that

(1− δk)||x||22 ≤ ||Φx||22 ≤ (1 + δk)||x||22,

for all x ∈
∑

K = x : ||x||0 ≤ K .

I Φ preserves the distance between any pair of K -sparse vectors.

I This gives a stronger guarantee of robustness against noise.

I Both of these conditions will hold true with high probability if Φ is
selected as a random matrix.



Recovery of sparse transforms

I Solve y = Φx , infinitely many solutions! Fat Φ implies
underdetermined system.

I We know that x was sparse

I What algorithms can we use to decode?

I Convex Optimisation or Greedy Algorithms or something else...?

`1 minimisation Orthogonal Matching Pursuit



Traditional Image Acquisition

We cannot use compressive sensing with this camera!



The single pixel camera.

Figure: The single pixel camera

Doesn’t acquire a single ray of light per pixel but rather a combination of
rays of light (each coming from a different direction or spectral band or
both) per pixel. To obtain back a picture that can be understood by the
human eye, one needs the reconstruction methods mentioned earlier.



Digital micro-mirror device

I Many very tiny tilt-able mirrors.

I Each mirror can be positioned in two states.

I A random number generator modulates the positions.

I Therefore the light, can be reflected in two distinct directions.



Image Acquisition

I Mathematically - calculating
inner products

I Each set of mirror orientations
= one measurement.

I Repeat M times.

I Therefore SPC compresses and
samples in the measurement
process.



Results from SPC

Figure: Reconstructed image taken with the SPC. (a) Conventional image of the
target scene. (b) Reconstructed image with M = 1300 measurements.



Why bother?

I Data storage is cheap.

I We can store the information, so why bother?

I What about a fixed sensors on the moon?

I Scenarios where we need simplicity at the sensor, complexity at the
analysis hub.



Compressive Sensing is not...

http://www.youtube.com/watch?v=LhF_56SxrGk


Any Questions?



Sparsity and wavelet transformation

Achievable resolution is dependant on the information content of the
image. If an image has low information content it is said to be sparse and
can be perfectly reconstructed from a small number of measurements.
Nearly all real world images exhibit this sparsity property when
transformed using a wavelet basis.

Figure: Wavelet transform

Note that most of the pixels here are black indicating low
information content.



Using `1 minimization to promote sparsity

‖x‖1 =
N∑
i=1

|xi |

Originally used in geophysics to aid detection of sparse spike trends in
earthquake data, optimisation based on the l1 norm can closely
approximate compressible signals with high probability.

min
x
||x||1 subject to y = Φx.

Recovery Algorithms



Orthogonal Matching Pursuit

Define the columns of Φ to be ϕ1, ϕ2, . . . , ϕN .
Require: r0 = y,Λ0 = ∅ and iteration counter i = 1

for i < T do
λt = argmax j=1,...,N | < rt−1, ϕj > |
{Find the index for the column of Φ with the greatest contribution.}
Λt = Λt−1 ∪ λt , Φt = [Φt−1, ϕλt ]
{Keeps track of the columns used.}
xt = argminx||y −Φtx||2
{Updates the signal estimate.}
rt = y −Φtxt

{Updates the measurement residual.}
end for
return x̂

Recovery Algorithms


