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Motivation

“Big Brother is Watching You.”
- George Orwell, 1984



Background Subtraction

I Construct, update then subtract.

I Not new - many methods exists.

I Most traditional methods are not efficient.

I CCTV often slowly adaptive background + rare foreground (spatially
and temporally)

I Waste of resources



What is compressive sensing?

Compressive sensing is a method of reducing the amount of data
collected from a signal without compromising the ability to later
reconstruct the signal accurately. This method will only work if the
signal of interest is compressible.



Sparse and Compressible Signals

I A signal is known as being K-sparse if x ∈ RN can be represented
as a linear combination of K basis vectors.

I Interested in K � N.

I If a signal is compressible there exist K large coefficients but the
remaining N − K coefficients are only required to be small and not
necessarily zero.



The encoding process.

Figure: CS measurement process, courtesy of Volkan Cevher.



Restricted Isometry Property (RIP)

A matrix Φ satisfies the (RIP) of order K if there exists a δK ∈ (0, 1)
such that

(1− δk)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δk)‖x‖22,

for all x ∈
∑

K = {x : ‖x‖0 ≤ K},

where ‖x‖0 is the zero pseudo-norm defined as

‖x‖0 = #(i |xi 6= 0).

If Φ satisfies the RIP with order 2K , then Φ approximately preserves the
distance between any pair of K -sparse vectors. Unfortunately the task of
checking that a matrix satisfies the RIP is a NP-hard problem, but
fortunately the RIP will hold true with high probability if Φ is selected as
a random matrix and M ≥ cK log N

K , where c is a small constant.



Recovery of sparse transforms

I Solve y = Φx , infinitely many solutions! Fat Φ implies
underdetermined system.

I We know that x was sparse

I What algorithms can we use to decode?

I Convex Optimisation or Greedy Algorithms or something else...?



Using `1 minimization to promote sparsity

‖x‖1 =
N∑
i=1

|xi |

Originally used in geophysics to aid detection of sparse spike trends in
earthquake data, optimisation based on the l1 norm can closely
approximate compressible signals with high probability.

min
x
||x||1 subject to y = Φx.



Orthogonal Matching Pursuit

Algorithm 1 Orthogonal Matching Pursuit

Define the columns of Φ to be ϕ1, ϕ2, . . . , ϕN .
Require: r0 = y,Λ0 = ∅ and iteration counter i = 1

for i < T do
λt = argmax j=1,...,N | < rt−1, ϕj > |
{Find the index for the column of Φ with the greatest contribution.}
Λt = Λt−1 ∪ λt , Φt = [Φt−1, ϕλt ]
{Keeps track of the columns used.}
xt = argminx||y −Φtx||2
{Updates the signal estimate.}
rt = y −Φtxt

{Updates the measurement residual.}
end for
return x̂



Recap



Sparsity

(a) Test frame (b) Ground truth

Figure: The spatial sparsity of foreground. A frame from the PETS data set
and the corresponding foreground in white. In this example, less than 1% of
the frame is foreground, as N=442,368 and K=3862.



Encoding

Figure: The single pixel camera



Compressive Sensing Background Subtraction.

Require: Initial compressed background yb
0

for all t do
Compressively Sense (Encode) yt = Φxt .
Reconstruct (Decode) x̂t = ∆(yt − yb

t )
Update Background yb

t+1 = αyt+1 + (1− α)yb
t

return x̂t

end for



Results

Original Ground Truth CS`1 CSOMP



Results

Figure: Precision-Recall Curves for the 3rd test frame



Results

Figure: Selection of the stopping criterion for OMP



Results

Figure: AUC over Sparsity Ratio



Conclusion and thoughts for the future.

I `1 minimisation outperforms OMP, but it’s close!

I Effect of the stopping criterion is vital for OMP - adaptive methods
needed?

I Ideal boundaries for compression ratio of M
N around 25%− 35%

I Can we incorporate prior information to aid the recovery process?
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Rhian Davies

r.davies3@lancs.ac.uk
www.lancs.ac.uk/~daviesr3

www.lancs.ac.uk/~daviesr3


Precision and Recall Definitions

Recall is defined as the fraction of correctly identified foreground pixels
over the number of ground truth foreground pixels which can be written
mathematically as

Recall =
TP

TP + FN
. (1)

Precision is defined to be the fraction of correctly identified foreground
pixels over the number of detected foreground pixels in total, or when
written mathematically

Precision =
TP

TP + FP
. (2)


