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Motivation STOR-I

“Big Brother is Watching You.”
- George Orwell, 1984




Background Subtraction STQR'l
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Construct, update then subtract.
Not new - many methods exists.
Most traditional methods are not efficient.

CCTV often slowly adaptive background + rare foreground (spatially
and temporally)

Waste of resources
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What is compressive sensing? STOR-i

excellence with impact

Compressive sensing is a method of reducing the amount of data
collected from a signal without compromising the ability to later
reconstruct the signal accurately. This method will only work if the
signal of interest is compressible.




Sparse and Compressible Signals STOR-i

» A signal is known as being K-sparse if x € RV can be represented
as a linear combination of K basis vectors.

> Interested in K < N.

> If a signal is compressible there exist K large coefficients but the
remaining N — K coefficients are only required to be small and not
necessarily zero.




The encoding process. ST@R-I
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Figure: CS measurement process, courtesy of Volkan Cevher.
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Restricted Isometry Property (RIP) STOR-i

A matrix ® satisfies the (RIP) of order K if there exists a dx € (0,1)
such that
(1= a)lIx[I3 < [lox]3 < (1+ 8e)lIx]3,

forallx e >, ={x:|x|lo < K},

where ||x||o is the zero pseudo-norm defined as

[Ix[lo = #(ilx; # 0).

If ® satisfies the RIP with order 2K, then ® approximately preserves the
distance between any pair of K-sparse vectors. Unfortunately the task of
checking that a matrix satisfies the RIP is a NP-hard problem, but
fortunately the RIP will hold true with high probability if ® is selected as
a random matrix and M > cK log % where ¢ is a small constant.
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Recovery of sparse transforms STOR-i

v

Solve y = ®x , infinitely many solutions! Fat ® implies
underdetermined system.

v

We know that x was sparse

v

What algorithms can we use to decode?

v

Convex Optimisation or Greedy Algorithms or something else...?



Using ¢; minimization to promote sparsity STOR-i

N
Ixlls = I
i=1

Originally used in geophysics to aid detection of sparse spike trends in
earthquake data, optimisation based on the /; norm can closely
approximate compressible signals with high probability.

min ||x||1 subject to y = ®x.
X
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Orthogonal Matching Pursuit STOR-i

Algorithm 1 Orthogonal Matching Pursuit

Define the columns of ® to be 1, p2,...,oN-
Require: rg =y, Ay = () and iteration counter i =1
for i < T do
Ae = argmax j_y | < re-1,9; > |
{Find the index for the column of ® with the greatest contribution.}
A =AU Ny, @ = [q)t—l; SDAt]
{Keeps track of the columns used.}
x¢ = argmin, ||y — ®¢x||2
{Updates the signal estimate.}
e =y — ®xe
{Updates the measurement residual.}
end for
return X




STOR-i

Recap




- ____________________________________________________
Sparsity STOR-i

(a) Test frame (b) Ground truth

Figure: The spatial sparsity of foreground. A frame from the PETS data set
and the corresponding foreground in white. In this example, less than 1% of
the frame is foreground, as N=442,368 and K=3862.



Encoding STOR-i

Low-cost, fast, sensitive
optical detection

Xmtr

Compressed, encoded
image data sent via RF
Image encoded by DMD for reconstruction

and random basis

DsP

Figure: The single pixel camera
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Compressive Sensing Background Subtraction. STOR-i

Require: Initial compressed background y®
for all t do
Compressively Sense (Encode) y; = ®x;.
Reconstruct (Decode) x; = A(y: — y?P)
Update Background y,; = ayei1 + (1 — a)yf
return X
end for




Results STOR-i
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Results

STOR-i
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Figure: Precision-Recall Curves for the 3rd test frame
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Results STOR-i

Warying the stopping criterion for OMP
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Figure: Selection of the stopping criterion for OMP
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Results STOR-i

AUC over compresssion ratio
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Figure: AUC over Sparsity Ratio



Conclusion and thoughts for the future. STOR-i

v

£1 minimisation outperforms OMP, but it’s close!

v

Effect of the stopping criterion is vital for OMP - adaptive methods
needed?

Ideal boundaries for compression ratio of % around 25% — 35%

v

v

Can we incorporate prior information to aid the recovery process?
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Thanks! STOR-i

Rhian Davies

r.davies3@lancs.ac.uk '
www.lancs.ac.uk/~daviesr3


www.lancs.ac.uk/~daviesr3
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Precision and Recall Definitions STOR-i

Recall is defined as the fraction of correctly identified foreground pixels
over the number of ground truth foreground pixels which can be written

mathematically as

TP
Recall = m (1)

Precision is defined to be the fraction of correctly identified foreground
pixels over the number of detected foreground pixels in total, or when
written mathematically

TP

Precision — . 5
recision = —5— 5 (2)



